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Antiphase Domains in a Lunar Pigeonite: Determination of the Average Shape, Size and 
Orientation from a Measurement of 
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Three-dimensional intensity profiles of selected diffuse b-type (h + k = odd) reflections in a core pigeonite 
from lunar rock 12053 have been measured by a point-count method using a single-crystal automatic 
diffractometer. Sampling reciprocal space about a Bragg reflection yields a 5 x 5 x 5 array of intensity 
data; contouring shows the shape, size and orientation of the diffuse reflection. It is assumed that the 
intensity distribution is Gaussian in reciprocal space and the diffuseness of the b-type reflections is 
primarily due to small antiphase domains. From the intensity data, the average shape, size and orien- 
tation of the antiphase domains have been determined by applying Fourier transform theory. The 
average shape of the antiphase domains can be approximated by an ellipsoid with axial lengths; 2= 
171, y=  141, and £= 122/~. Lengths of these axes have been adjusted by a correction factor which 
makes the adjacent a-type (h+ k= even) reflection conform to its ideal spherical form. The long (z) 
axis deviates from the crystallographic axis and forms a 44 ° circle about 211. The average size and shape 
of the domains agree well with those determined through electron microscopy. 

Introduction 

Crystals showing simultaneously sharp and diffuse 
X-ray reflections due to mistakes in the structure are 
well known, one such case being crystals with small 
antiphase domains. The diffuseness is caused by the 
small domain size and is comparable to the line broad- 
ening in powder diffraction due to small particle size. 
In pigeonite the b-type ( h + k = o d d )  reflections are 
sometimes diffuse because of the presence of small 
antiphase domains. We have measured three-dimen- 
sional intensity profiles of the selected b-type diffuse 
reflections in a core pigeonite from lunar rock 12053 
by a point-count method using a single-crystal auto- 
matic diffractometer. The results of such measurements 
yield the shape, size and orientation of the diffuse re- 
flections in three-dimensional reciprocal space. As- 
suming the intensity distribution to be Gaussian in 
reciprocal space, from these data, we have determined 
the average shape and size, as well as, orientation of 
the antiphase domains with respect to the crystallo- 
graphic axes applying Fourier transform theory. In the 
present paper, our method has been applied to a lunar 
pigeonite. We would like to point out, however, that 
our method is a perfectly general one and can be ap- 
plied to other crystals, such as plagioclase feldspars, 
showing diffuse X-ray reflections due to small anti- 
phase domains. 

Antiphase domains in pigeonite 

Pigeonites are monoclinic pyroxenes within the system 
CaSiOa-MgSiOa-FeSiO3, the CaSiO3 component vary- 
ing between 5 and 15 mol. %. At room temperature 
the space group is P21/c (Morimoto, 1956; Bown & 
Gay, 1957). At high temperatures, pigeonite undergoes 
a displacive phase transformation, the space group 
being C2/c (Prewitt, Papike & Ross, 1970). Antiphase 
domains are generated during the C2/c to P2z/c phase 
transformation (Morimoto & Tokonami, 1969). Hence, 
b-type ( h + k - - o d d )  reflections, which appear during 
the phase transformation, are closely related to the 
formation of the antiphase domains. In the C2/c phase, 
there is only one type of silicate chain, while in the 
P21/c phase, there are two types of crystallographically 
distinct silicate chains, A and B, the B-chain being 
more kinked than the A-chain (Brown, Prewitt, Papike 
& Sueno, 1972). When pigeonites are cooled from mag- 
matic temperatures, mistakes in ordering of the chains 
along a and b directions in the crystal occur during the 
C2/c to P2~/c transformation. These mistakes account 
for the antiphase boundary. The postulated displacement 
vector, which brings the antiphase domains into reg- 
ister, is a/2-~ b/2 (Morimoto & Tokonami, 1969). The 
antiphase domains in pigeonite have been directly ob- 
served in the electron microscope by imaging through 
the b-type reflections (Bailey et al., 1970; Christie et al., 
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1971; Champness & Lorimer, 1971; Ghose, Ng & 
Walter, 1972). Empirically it has been observed that 
when the size of the antiphase domains is smaller than 
ca. 1000 /~, the b-type reflections are diffuse (Ghose 
et al., 1972). When the antiphase domains are small 
(below 100/~), it is difficult to resolve them through the 
electron microscope and determine the shape and size 
of the domains directly. Furthermore, getting a three- 
dimensional view of the domains through electron 
microscopy is difficult, if not impossible. In such cases, 
measurement of the three-dimensional profiles of dif- 
fuse b-type reflections in reciprocal space can yield the 
average shape, size and orientation of the antiphase 
domains. 

Experimental 

We selected a yellow pigeonite fragment, showing very 
faint diffuse reflections from exsolved augite and dif- 
fuse b-type reflections in (hOl) precession photographs 
(Fig. 1). The crystal data are listed in Table 1. Electron 
microprobe analysis of the same crystal used for inten- 
sity measurements indicated that the crystal is chemi- 
cally quite homogeneous, with an approximate com- 
position: (Cao.19Feo.59Mgl.22)Si20 6. 

Table 1. Crystal data on pigeonite from rock 12053 

Cell dimensions 
a0 9.686 (3) 
b0 8.890 (3) 
co 5"239 (2) 
fl 108-5 (4) ° 

Space group P2[/c 
Size of crystal (ram) 0"10 x 0"13 x 0"24 
Linear absorption coefficient, (cm -a) 31 

Cell dimensions and intensities were measured on a 
Syntex P ]  automatic single-crystal diffractometer using 
monochromatic Mo Ke radiation and a solid-state de- 
tector system. Least-squares refinement with 1003 re- 
flections, using anisotropic temperature factors, yielded 
an R value of 0.042. The site occupancies are M2: 
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Fig. 2. A three-dimensional view of the diffuse 102 pigeonite 
reflection in reciprocal space. Contours are at intervals of 
I= 200 counts. 

Ca 0-18, Fe 0.47 and Mg 0.35, and M I :  Mg 0-87 and 
Fe 0.13. The details of the pigeonite crystal structure 
are comparable to other terrestrial and lunar pigeonite 
structures refined so far (Morimoto & Gfiven, 1970; 
Clark, Ross & Appleman, 1971 ; Takeda, 1972; Brown 
et al., 1972). 

The three-dimensional intensity profiles of a number 
of selected adjacent a and b-type reflections were meas- 
ured using a point-count method. The point-count 
method samples a 5 x 5 x 5 grid of reciprocal space 
about a Bragg reflection by treating h, k, and l as vari- 
ables. 

The sampling grid is a parallelepiped with edges par- 
allel to the reciprocal cell axes. Increments in h, k, and l 
depend on the length of reciprocal cell axes and are 
calculated so that the sampling positions provide com- 
plete coverage of the diffracting volume. For this 12053 
pigeonite Ah=0.02490 A -1. The reciprocal volume 
sampled at each grid point was 4.628x 10 .5 A -3. 
During recording the detector window is closed down 
to about 0.2 x 0.2 mm to eliminate integration of the 
intensities. Point counts were made for 1.5 min at each 
grid point. Contours of the 5 x 5 x 5 array of intensity 
data show the size, shape and orientation of a diffuse 
Bragg reflection in reciprocal space. The I--200 count 
contours for the diffuse 102 reflection are shown in 
Fig. 2. 

The diffracting volume in reciprocal space 

In order to obtain the shape and size of the diffracting 
volume around a Bragg reflection we made the follow- 
ing assumptions: 

1. The intensity distribution is Gaussian in reciprocal 
space. 

2. Thermal diffuse scattering does not change the 
shape of a diffracting volume but may broaden it. 

3. Diffracting volume in an ideal crystal is spherical. 
4. Observed intensity distribution is intensity distri- 

bution of an ideal crystal convoluted by a 'smearing' 
function. 

Assumptions 1 and 4 taken together imply that the 
'smearing' function is Gaussian. The intensity at a 
point in reciprocal space is given by 

I(s) = IopF* FG(s), (1) 

where s is a continuous variable in reciprocal space, p 
is the polarization factor, Io=Ibeame4/R2rnZc4, where R 
is the distance, e and m are charge and mass of an elec- 
tron, and c is the velocity of light; and G(s) is some 
distribution function. All quantities on the right-hand 
side except G(s) are constant in the vicinity of a partic- 
ular reciprocal-lattice node designated hkl. Equation 
(1) implies that around each reciprocal-lattice node 
occurs a distribution of intensities determined by G(s). 
Therefore, G(s) contains all those factors that affect the 
size and shape of the diffracting volume such as crystal 
shape, thermal diffuse scattering, domain structure, 
and other order-disorder effects. In order for G(s) to 
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Fig. 1. Precession photograph (hOl) of lunar pigeonite from rock 12053• Note b-type (h+k=odd) reflections are diffuse and 
stretched parallel to a*. Diffuse reflections from very fine exsolved augite lamellae parallel to the (100) plane are indicated by 
arrows. 
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be a distribution function in three dimensions, it must 
have the form 

G(s)= CN exp ( -½srU-~s) ,  (2) 

where CN is the normalization constant and U is a 
symmetric metric tensor. At this point all we know 
about U is that it is a conicoid, but a priori we expect 
it to be some real quadric, probably an ellipsoid, whose 
eigenvalues and eigenvectors give the size, shape, and 
orientation of the diffracting volume in reciprocal 
space. 

To measure I(s) as a function of position in recip- 
rocal space, we set up a 5 x 5 x 5 grid about each Bragg 
reflection. Because the center of the diffracting volume 
is not necessarily at the center of the grid we rewrite 
equation (2) to include the center as 

G(s)= CN exp [ - ½ ( s - h ) r U - ~ ( s - h ) ] ,  (3) 

where h represents the coordinates of the center. Equa- 
tion (1) now becomes 

I(s)=Iopr*Fexp [ - ½ ( s - h ) r B ( s - h ) ] ,  (4) 

where B = U  -z and I0 includes CN. We now need to 
find I0, h, and B. With the natural log of both sides of 
equation (4) taken to convert it to linear form, 

--2 log I(s)= --2 log (IoF*Fp)+(s--h)rB(s--h). (5) 

Because this equation contains too many unknowns 
for least-squares methods to be used, we first determine 
h as the centroid of the intensity distribution. Equation 
(5) is expanded to 

- 2  log I(s)+ 2 log (F*Fp)=(st-ht)2bu 
+ 2(st - ha) (s2- hz)bt2 + 2(sl - h~) (s3 - h3)b,3 
+ 2(s2 - hz)Zb22 + 2(s2- h2) (s3 - ha)b23 
+ (s3 - h3)Zb33- 2 log Io. (6) 

We can apply the method of least squares (Nye, 1957) 
by letting A be the column vector of the left-hand side 
of equation (6), 0 be the 125 x 7 array of coefficients of 
b u and log I0, and a be the column vector containing 
the B~j's and log I0 so that 

a=(0 r0 ) -10rA.  (7) 

The first six terms of a form the 3 x 3 symmetric metric 
tensor B, whose eigenvalues and eigenvectors may be 
found by standard methods after converting B to an 
orthonormal basis, B °. The eigenvectors give the prin- 
cipal axes in reciprocal space and the eigenvalues 
Bz, B2, B3 give the principal-axis representation 

+ + (8) 

to the quadratic form sTBs; 1/]/B~ is the length of the 
principal axes. Applying Fourier methods to G(s), its 
transform in crystal space is 

W(x) = exp ( -½xrUx)  (9) 
so that U is a quadric tensor in crystal space, with 
eigenvalues U1, U2, Ua. As U = B  -1, its eigenvalues are 
1/B~ (Hohn, 1964) and the eigenvectors are the same 
as those of B,, if B and U have been converted to an 
orthonormal basis set. 

Determination of the size, shape and orientation of the 
antiphase domains 

The quadric tensor U represents in crystal space those 
factors that contribute to the size and shape of the dif- 
fracting volume of a lattice node, which include the 
external shape of the crystal, thermal diffuse scattering 
and small subgrain boundaries. Therefore, all known 
contributing factors must be eliminated from U in 
order to interpret its physical significance. 

Adjacent nodes in the reciprocal lattice should re- 
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Fig. 3. Stereographic projection of ellipsoidal axes of (a) a-type reflections adjacent to (b) uncorrected b-type ieflections, and (e) 
corrected b-type reflections. 
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flect the external form factor similarly, that is, the 
shape of the diffracting volume of adjacent nodes 
caused by the external shape of the crystal should be 
the same. Therefore adjacent a- and b-type reflections 
should have the same contribution from the external 
form factor. Neglecting thermal diffuse scattering and 
assuming that the shape of the reflecting region is 
spherical in an ideal crystal and that the a-type reflec- 
tions represent the least deviation from the ideal situa- 
tion, we can remove the effects that cause any deviation 
from sphericity of the a-type reflections. 

Letting A represent the tensor of the a-type reflec- 
tions and S the ideal spherical form of the a-type re- 
flections, then there exists some quadric E such that 

A - E = S  (10) 

where A1A2Aa = S1S2Sa and $1 = $2 = $3. That is, E con- 
verts A into a sphere. Subtracting E from the tensor 
of the adjacent b-type reflections, O, such that 

O - E - - T ,  (11) 

then applies the same correction to O. If the b-type 
reflection is spherical the eigenvalues, 2i, of T should 
all be equal. Otherwise, they represent the deviations 
from sphericity. 

The eigenvectors of A [Fig. 3(a)] are dispersed on a 
spiral curve and do not appear random. The eigen- 
vectors of O [Fig. 3(b)] are less widely distributed. The 
X axis which is the long axis of  the reflecting volume 
in reciprocal space falls very close to the [102] direction 
whereas the Z axis forms a small circle. Finding the 
tensor E for each a-type reflection and applying it to O 
yields the distribution of eigenvectors shown in Fig. 
3(e). The Z axes fall on a 44 ° small circle about 211. 
The short axes are spread somewhat about [102]. How- 
ever, the short and intermediate axes of 30~ are inter- 
changed. 

As the a-type reflections are elongated they become 
diffuse but the directions [Fig. 3(a)] of elongation are 
not such that they would be ordinarily observed. This 
distortion of the a-type reflections is caused in part by 
the shape of the crystal. However, this distortion 
should have a constant orientation which is over- 
printed by either a fine-scale mosaic structure or elastic- 
ally distorted cell parameters or some combination of 
these two. The above procedure compensates for any 
such structures present in pigeonite which could cause 
diffuseness of both a- and b-type reflections. 

The lengths and orientations of the principal axes of 
the antiphase domains, determined from six strong 
diffuse reflections, are listed in Table 2. Lengths of 
these axes have been adjusted using equation (11). It is 
significant that the orientation of the long axes of the 
antiphase domains form a small circle [F.ig. 3(e)]. The 
cause of this deviation is not clear at present. 

Another significant factor present in Table 2 which 
is unexplained at present is that the lengths of the axes 
vary among the Bragg reflections, giving an apparent 
size dependence on hkl. This may be attributable to: 

1. dependence on hkl, or 
2. dependence on 20, or 
3. dependence on L or 
4. dependence on F. 

Dependence on hkl and 20 are similar in that they 
imply that orientation of the domains with respect to 
the X-ray beam gives different results or that thermal 
diffuse scattering is not negligible. A dependence on I 
would indicate that an unknown factor has not been 
included. The fourth possibility has been eliminated 
because F appears in the calculations. 

The apparent size dependence on hkl is not a new 
problem and has been noted by Guinier (1963, p. 270) 
and Brown et al. (1972). Thus it appears to be a basic 
unexplained observation in antiphase domain studies. 

Table 2. Lengths o f  principal axes of  domains and 
their orientations 

Axial Orientation (°) 
Reflection Axis length (A) a* b c 

z 181 113 104 27 
102 y 143 81 21 71 

x 125 153 74 109 
z 270 103 86 14 

30~ y 148 166 96 103 
x 136 85 172 84 
z 168 107 93 17 

304 y 139 103 13 90 
x 129 22 78 73 
z 193 104 77 19 

702 y 136 96 167 78 
x 116 15 93 76 
z 169 113 104 28 

052 y 146 75 27 68 
x 120 152 68 107 
z 176 100 59 33 

233 y 149 105 148 62 
x 121 18 98 74 
z 171 104 80 17 

Mean y 141 129 62 52 
x 122 24 109 75 

Discussion 

From precession photographs of Mull pigeonite, Mori- 
moto & Tokonami (1969) have observed that the dif- 
fuse b-type reflections are disc shaped, being stretched 
parallel to a* and b*. From two-dimensional line pro- 
files of these reflections measured on a diffractometer, 
they concluded that the antiphase domains are col- 
umnar in shape, the long axis being parallel to the 
crystallographic c axis. On the other hand, our analysis 
indicates that the antiphase domains are ellipsoidal 
in shape, the long axis deviating considerably from 
the c axis. This observation has also been made by 
Heuer and his colleagues from the shape and orien- 
tation of diffuse b-type spots in electron diffraction 
patterns of lunar pigeonites (A. H. Heuer, 1972, oral 
communication). 

The shape and size of the antiphase domains in this 
pigeonite are in fair agreement with those observed 
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through electron microscopy, which shows that the 
antiphase domains are rounded to blocky in shape, 
about 50-100 A in diameter (see Fig. 6 in Ghose, Ng & 
Walter, 1972). 

The measurement of the three-dimensional intensity 
profiles were carried out at Syntex Analytical Instru- 
ments, Cupertino, California. This research has been 
supported by NASA grant NGR 05-003-486. 

References 

BAILEY, J. C., CaAMPNESS, P. E., DUNHAM, A. C., ESSON, J., 
FVFE, W. S., MACKENZIE, W. S., STUMPFL, E. F. & 
ZUSSMAN, J. (1970). Proc. Apollo 11 Lunar Sci. Conf., 
Geochim. Cosmochim. Acta, Suppl. 1, Vol. 1, pp. 169-194. 

BOWN, M. G. & GAY, P. (1957). Acta Cryst. 10, 440--441. 
BROWN, G. E., PREWITT, C. T., PAPIKE, J. J. & SUENO, S. 

(1972). J. Geophys. Res. 77, 5778-5789. 
CHAMPNESS, P. E. & LORIMER, G. W. (1971). Contrib. 

Miner. Petrol. 33, 171-183. 

CHRISTIE, J. M., LALLY, J. S., HEUER, A. H., FISHER, R. M., 
GRIGGS, D. T. • RADCLIFFE, S. V. (1971). Proc. 2nd 
Lunar Sci. Conf., Vol. 1, pp. 68-89. Boston: M.I.T. 
Press. 

CLARK, J., Ross, M.& APPLEMAN, D. (1971). Amer. Min. 
56, 888-908. 

GHOSE, S., NG, G. & WALTER, L. S. (1972). Proc. 3rd Lunar 
Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 3, Vol. 1, 
pp. 507-531. 

GUINIER, A. (1963). X-Ray Diffraction. San Francisco: 
W. H. Freeman. 

HOHN, F. E. (1964). Elementary Matrix Algebra, 2nd ed. 
New York: Macmillan. 

MORtMOTO, N. (1956). Proc. Japan Acad. 32, 750--752. 
MORIMOTO, N. & GOVEN, N. (1970). Amer. Min., 55, 

1195-1209. 
MORIMOTO, N. & TOKONAMI, M. (1969). Amer. Min. 54, 

725-740. 
NYE, J. F. (1957). Physical Properties of Crystals. Oxford 

Univ. Press. 
PREWITT, C. T., PAPIKE, J. J. & ROSS, M. (1970). Earth 

Planet. Sci. Lett. 8, 448. 
TAKEDA, H. (1971). Earth Planet. Sci. Lett. 15, 65-71. 

Acta Cryst. (1975). A31, 130 

Direct Structure Determination of Asymmetric Membrane Systems from X-ray Diffraction* 
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A theoretical analysis of X-ray diffraction from asymmetric planar systems is given. Phase information is 
obtained from the continuous intensity function from such a system. Although a unique phase function 
cannot be determined, it is possible to derive the relatively small number of phase solutions which are 
consistent with the observed diffraction. 

The structure of biological membranes is a subject of 
considerable current interest. X-ray diffraction studies 
have had a dominant role and have yielded much valu- 
able information on this important topic. One fact 
about membrane ultrastructure which is slowly becom- 
ing evident is that most natural biological membranes 
(in contrast to artificial model lipid bilayer systems) 
are asymmetric. This asymmetry appears to be pre- 
dominantly due to the protein component of the mem- 
brane (which is not to rule out the possibility of an 
asymmetric distribution of lipids in the membrane). 
Hence, the functional properties of the membrane are 
determined, in large part, from this property. For- 
tunately, many of the naturally occurring asymmetric 
membrane systems consist of repeating units of mem- 
brane pairs which have a center of symmetry. This per- 
mits the rather well developed theory of diffraction by 
centrosymmetric structures to be utilized in structure 

* This work was supported by NHLI Grant HL 06285. 

determination. However, there are many other mem- 
brane systems of interest where the former theory is 
not applicable (e.g., dispersions of membrane vesicles 
and sheets). The present paper is concerned with the 
analysis of these asymmetric systems. 

The difficulty in analyzing diffraction data from 
asymmetric structures (as well as symmetric ones) lies 
in the well-known phase problem of X-ray diffraction 
theory. There are indirect methods of obtaining this 
phase information (e.g. isomorphous replacement), but 
they have not been very useful for membranes. There 
has been much work in the past few years on direct 
methods of phase determination. These studies have 
shown that the X-ray diffraction intensity data con- 
tain some of the phase information necessary for a 
structural determination. Crucial to these studies has 
been the realization that the rather simple mathematical 
properties of positivity and boundedness of the electron 
density distribution (e.d.d.) place a severe restriction 
on its Fourier transform. In particular, the property 


